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Abstract. We study the problemMinimum Hidden Guard Set, which
consists of positioning a minimum number of guards in a given polygon or
terrain such that no two guards see each other and such that every point
in the polygon or on the terrain is visible from at least one guard. By
constructing a gap-preserving reduction from Maximum 5-Ocurrence-
3-Satisfiability, we show that this problem cannot be approximated
by a polynomial-time algorithm with an approximation ratio of n1−ε for
any ε > 0, unless NP = P , where n is the number of polygon or terrain
vertices. The result even holds for input polygons without holes. This
separates the problem from other visibility problems such as guarding
and hiding, where strong inapproximability results only hold for poly-
gons with holes. Furthermore, we show that an approximation algorithm
achieves a matching approximation ratio of n.

1 Introduction

In the field of visibility problems, guarding and hiding are among the most
prominent and most intensely studied problems. In guarding, we are given as
input a simple polygon with or without holes and we need to find a minimum
number of guard positions in the polygon such that every point in the interior
of the polygon is visible from at least one guard. Two points in the polygon are
visible from each other, if the straight line segment connecting the two points
does not intersect the exterior of the polygon. In hiding, we need to find a
maximum number of points in the given input polygon such that no two points
see each other.

The combination of these two classic problems has been studied in the liter-
ature as well [11]. The problem is called Minimum Hidden Guard Set and is
formally defined as follows:

Definition 1. The problem Minimum Hidden Guard Set consists of finding
a minimum set of guard positions in the interior of a given simple polygon such
that no two guards see each other and such that every point in the interior of
the polygon is visible from at least one guard.
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We can define variations of this problem by allowing input polygons to con-
tain holes or not or by letting the input be a 2.5 dimensional terrain. A 2.5
dimensional terrain is given as a triangulated set of vertices in the plane to-
gether with a height value for each vertex. The linear interpolation inbetween
the vertices defines a bivariate continuous function, thus the name 2.5 dimen-
sional terrain (see [10]). In other variations, the guards are restricted to sit on
vertices. Problems of this type arise in a variety of applications, most notably
in telecommunications, where guards correspond to antennas in a network with
a simple line-of-sight wave propagation model (see [4]).

While Minimum Hidden Guard Set is NP -hard for input polygons with or
without holes [11], no approximation algorithms or inapproximability results are
known. For other visibility problems, such as guarding and hiding, the situation is
different: Minimum Vertex/Point/Edge Guard are NP -hard [9] and cannot
be approximated with an approximation ratio that is better than logarithmic in
the number of polygon or terrain vertices for input polygons with holes or terrains
[4]; these problems are APX-hard1 for input polygons without holes [4]. The best
approximation algorithms for these guarding problems achieve a logarithmic
approximation ratio for Minimum Vertex/Edge Guard for polygons [8] and
terrains [6], which matches the logarithmic inapproximability result upto low-
order terms in the case of input polygons with holes and terrains; the best
approximation ratio for Minimum Point Guard is Θ(n), where n is the number
of polygon or terrain vertices. The problem Maximum Hidden Set cannot
be approximated with an approximation ratio of nε for some ε > 0 for input
polygons with holes and it is APX-hard for polygons without holes ([5] or [7]).
The best approximation algorithms achieve approximation ratios of Θ(n). Thus,
for both, hiding and guarding, the exact inapproximability threshold is still open
for input polygons without holes. To get an overview of the multitude of results
in visibility problems, consult [12] or [13].

In this paper, we present the first inapproximability result for Minimum
Hidden Guard Set: we show that no polynomial-time algorithm can guarantee
an approximation ratio of n1−ε for any ε > 0, unless NP = P , where n is the
number of vertices of the input structure. The result holds for terrains, polygons
with holes, and even polygons without holes as input structures. We obtain our
result by constructing a gap-preserving reduction (see [1] for an introduction to
this concept) from Maximum 5-Occurrence-3-Satisfiability, which is the
APX-hard satisfiability variation, where each clause consists of at most three
literals and each variable occurs at most five times as a literal [2]. We also analyze
an approximation algorithm for Minimum Hidden Guard Set proposed in [11]
and show that it achieves a matching approximation ratio of n.

1 A problem is in the class APX, if it can be approximated by a polynomial-time
algorithm with an approximation ratio of 1+ δ, for some constant δ ≥ 0. It is APX-
hard, if no polynomial-time algorithm can guarantee an approximation ratio of 1+ε,
for some constant ε > 0, unless P = NP . A problem is APX-complete, if it is in
APX and APX-hard. See [2] for more details.
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Fig. 1. Overview of construction

In Sect. 2 we present the construction of the reduction. We analyze the re-
duction and obtain our main result in Sect. 3. We analyze an approximation
algorithm in Sect. 4. Section 5 contains some extensions of our results and con-
cluding thoughts.

2 Construction of the Reduction

In this section, we show how to construct in polynomial time from a given
instance I of Maximum 5-Occurrence-3-Satisfiability with n variables
x1, . . . , xn and m clauses c1, . . . , cm an instance I ′ of Minimum Hidden Guard
Set, i.e., a simple polygon.

An overview of the construction is given in Fig. 1. The main body of the
constructed polygon is of rectangular shape. For each clause ci, a clause pattern
is constructed on the lower horizontal line of the rectangle, and for each variable
xi, we construct a variable pattern on the upper horizontal line as indicated in
Fig. 1.

The construction will be such that a variable assignment that satisfies all
clauses of I exists, if and only if the corresponding polygon I ′ has a hidden
guard set with O(n) guards; otherwise, I ′ has a hidden guard set of size O(t),
where t will be defined as part of the rake-gadget in the construction. The rake
gadget, shown in Fig. 2, enables us to force a guard to a specific point R in the
polygon. It consists of t dents, which are small trapezoidal elements that point
towards point R. Rakes have the following property:

Lemma 1. If the t dents of a rake are not covered by a single hidden guard at
point R, then t hidden guards (namely one guard for each dent) are necessary
to cover the dents.
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Proof. Clearly, any guard outside the triangle R, l, and r and outside the dents
does not see a single dent completely. A guard in this triangle (but not at R)
sees at most one dent completely, but only one such guards can exist as guards
must be hidden from each other. Therefore, at least t−1 guards must be hidden
in the dents. ��

In order to benefit from this property of a rake, we must place the rake in the
polygon in such a way that the view from point R to the rake dents is not blocked
by other polygon edges. As shown in Fig. 1, we place a rake at point R0 in the
lower left corner of the rectangle with the t dents at the top left corner.

A clause pattern, shown in Fig. 3, consists of t triangular-shaped spikes.
Clause patterns are placed on the lower horizontal line of the rectangle. They
are constructed in such a way that a guard on the upper horizontal line could see
all spikes of all clause patterns. (This, however, will never happen, as we have
already forced a guard to point R0 to cover its rake. This guard would see any
guard on the upper horizontal line.)

For each variable xi, we construct a variable pattern, that is placed on top of
the horizontal line of the rectangle. Each variable pattern opens the horizontal
line for a unit distance. Each variable pattern has constant distance from its
neighbors and the right-most variable pattern (for variable xn) is still to the left
of the left-most clause pattern (for clause c1), as indicated in Fig. 1. The variable
patterns will differ in height, with the left-most variable pattern (for x1) being
the smallest and the right-most (for xn) the tallest. Figure 4 shows the variable
pattern of variable xi.
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Fig. 4. Variable pattern with three positive and two negative literals

A variable pattern is roughly a rectangular structure with a point Fi on top
and a point Ti on the bottom. The construction is such that a guard sits at
Fi, if the variable is set to false, and at Ti otherwise. Literals are represented by
triangles with tips L1

i , . . . , L
5
i for each of the five occurrences of the variable (some

may be missing, if a variable occurs less than five times as literal). These triangles
are constructed such that – for positive literals – they are completely visible from
Fi, but not from Ti, and – for negative literals – they are completely visible from
Ti, but not from Fi. A guard that sits at a point Lk

i , for any k = 1, . . . , 5, can
see through the exit of the variable pattern between points El

i and Er
i . The

construction is such that such a guard sees all spikes of the corresponding clause
pattern (but no spikes of other clause patterns). This is shown schematically in
Fig. 1.

In order to force a guard to sit at either Fi or Ti, we construct a rake point
R1

i above L1
i and a rake point R2

i below L5
i with t dents, all of which are on the

right vertical line of the variable rectangle. Points R1
i and R2

i are at the tip of
small triangles that point towards points F ′

i and T ′
i , which lie a small distance

to the right of Fi and Ti, respectively. In addition, we construct two areas S1
i

and S2
i to the left of Ti and Fi, where we put t triangular spikes, each pointing

exactly towards Fi and Ti. For simplicity, we have only drawn three triangular
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spikes in Fig. 4 instead of t. Area S1
i is the area of all these triangles at the top

of the variable rectangle, area S2
i is the area of all these triangles at the bottom

of the variable rectangle.
This completes our description of the constructed polygon that is an instance

of Minimum Hidden Guard Set. The polygon consists of a number of vertices
that is polyonmial in the size |I| of the Max 5-Occurrence-3-Satisfiability
instance I and in t. The coordinates of each vertex can be computed in time
polynomial in |I| and t, and they can be expressed by a polynomial (in |I| and
t) number of bits. Thus, the reduction is polynomial, if t is polynomial in |I|.

3 Analysis of the Reduction

The following two lemmas describe the reduction as gap-preserving and will
allow us to prove our inapproximability result.

Lemma 2. If the Maximum 5-Occurrence-3-Satisfiability instance I
with n variables can be satisfied by a variable assignment, then the corresponding
Minimum Hidden Guard Set instance I ′ has a solution with at most 8n + 1
guards.

Proof. In I ′, we set a guard at each rake point R0 and R1
i and R2

i , for i = 1, . . . , n,
which gives a total of 2n+1 hidden guards. For each variable xi, we then place a
guard at Fi or Ti depending on the truth value of the variable in a fixed satisfying
truth assignment; this yields additional n hidden guards. Finally, we place a
guard at each literal Lk

i , if and only if the corresponding literal is true. This
yields at most 5n hidden guards, as each variable occurs at most five times as a
literal. Since the thruth assignment satisfies all clauses, all clause patterns will be
covered by at least one guard. The variable patterns and the main body rectangle
are covered completely as well. Thus, the solution is feasible and consists of at
most 8n + 1 guards. ��

Lemma 3. If the Maximum 5-Occurrence-3-Satisfiability instance I
with n variables cannot be satisfied by a variable assignment, then any solution
of the corresponding Minimum Hidden Guard Set instance I ′ has at least t
guards.

Proof. We prove the following equivalent formulation: If I ′ has a solution with
strictly less than t guards, then I is satisfiable.

Assume we have a solution for I ′ with less than t guards. Then, there must
be a guard at each rake point R0 and R1

i and R2
i for i = 1, . . . , n; this already

restricts the possible positions for all other guards quite drastically, since they
must be hidden from each other.

Observe in this solution, how the triangles of the areas S1
i and S2

i are covered.
Since we have guards at rake points R1

i and R2
i , the guards for S1

i and S2
i can

only lie in the 4-gons (S1
i,l, S

1
i,r, Fi, F

′
i ) or (S2

i,r, S
2
i,l, Ti, T

′
i ), but only a guard in

the smaller triangle of either (Fi, F
′
i , F

′′
i ) or (Ti, T

′
i , T

′′
i ) can see both areas S1

i
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and S2
i (see Fig. 4). If S1

i or S2
i is covered by a guard outside these triangles, then

the other area can only be covered with t guards inside the S1
i or S2

i triangles.
Therefore, there must be a guard in either one of the two triangles (Fi, F

′
i , F

′′
i )

or (Ti, T
′
i , T

′′
i ) in each variable pattern. (Point F ′′

i is the intersection point of the
line from R1

i to F ′
i and from S2

i,r to Fi; Point T ′′
i is the intersection point of the

line from R2
i to T ′

i and from S1
i,l to Ti). We can move this guard to point Fi or

Ti, respectively, without changing which literal triangles it sees.
Now, the only areas in the construction not yet covered are the literal trian-

gles of those literals that are true and the spikes of the clause patterns. Assume
for the sake of contradiction that one guard is hidden in a triangle of a clause
pattern ci. This guard sees the triangles of all literals that represent literals from
the clause. This, however, implies that the remaining t−1 triangles of the clause
pattern ci can only be covered by t − 1 additional guards in the clause pattern,
thus resulting in t guards total. Therefore, all remaining guards must sit in the
literal triangles in the variable patterns. W.l.o.g., we assume that there is a guard
at each literal point Lk

i that is not yet covered by a guard at points Fi or Ti.
If these guards collectively cover all clause patterns, we have a satisfying truth
assignment; if they do not, at least t guards are needed to cover the remaining
clause patterns. ��

Lemmas 2 and 3 immediately imply that we cannot approximate Minimum
Hidden Guard Set with an approximation ratio of t

8n+1 in polynomial time,
because such an algorithm could be used to decide Maximum 5-Occurrence-
3-Satisfiability. To get to an inapproximability result, we first observe that

|I ′| ≤ (8t + 30)n + 2tm + 4t + 100 ≤ 18tn + 30n + 4t + 100

by generously counting the constructed polygon vertices and using m ≤ 5n. We
now set

t = nk

for an arbitrary but fixed k > 1. This implies |I ′| ≤ nk+2 and thus

n ≥ |I ′| 1
k+2

On the other hand, we cannot approximate Minimum Hidden Guard Set
with an approximation ratio of

t

8n + 1
≥ nk

n2
= nk−2 ≥ |I ′| k−2

k+2 = |I ′|1− 4
k+2 .

Since k is an arbitrarily large constant, we have shown our main theorem:

Theorem 1. Minimum Hidden Guard Set on input polygons with or without
holes cannot be approximated by any polynomial time approximation algorithm
with an approximation ratio of |I|1−ε for any ε > 0, where |I| is the number of
polygon vertices, unless NP = P .
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4 An Approximation Algorithm

The following algorithm to find a feasible solution for Minimum Hidden Guard
Set was proposed in [11]: Iteratively add a guard to the solution by placing it
in an area of the input polygon (or terrain) that is not yet covered by any other
guard that is already in the solution. In terms of an approximation ratio for this
algorithm, we have the following

Theorem 2. Minimum Hidden Guard Set can be approximated in polyno-
mial time with an approximation ratio of |I|, where |I| is the number of polygon
vertices.

Proof. Any triangulation of the input polygon partitions the polygon into |I|−2
triangles. Now, fix any triangulation. Any guard that the approximation algo-
rithm places (as described above) lies in at least one of the triangles of the
triangulation and thus sees the corresponding triangle completely. Therefore,
the solution will contain at most |I| − 2 guards. Since any solution must consist
of at least one guard, the result follows. ��

5 Extensions and Conclusion

Theorem 1 extends straight-forward to terrains as input structures by using the
following transformation from a polygon to a terrain (see [4]): Given a simple
polygon, draw a bounding box around the polygon and then let all the area
in the exterior of the polygon have height h (for some h > 0) and the interior
height zero. This results in a terrain with vertical walls that we then triangulate.
Similarly, Theorem 2 extends to terrains as input structures immediately.

Another straight-forward extension of Theorem 1 leads to problem variations,
where the guards may only sit at vertices of the input structure. Since we have
always placed or moved guards to vertices throughout our construction, The-
orem 1 holds for Minimum Hidden Vertex Guard Set for input polygons
with or without holes and terrains. Unfortunately, the vertex-restricted prob-
lem variations cannot be approximated analogously to Theorem 2, as even the
problem of determining whether a feasible solution exists for these problems is
NP -hard [11].

If we restrict the problem even more, namely to a variation, where the guards
may only sit at vertices and they only need to cover the vertices rather than
the whole polygon interior, we arrive at the problem Minimum Independent
Dominating Set for visibility graphs. Also in this case, Theorem 1 holds, thus
adding the class of visibility graphs to the numerous graph classes for which
this problem cannot be approximated with a ratio of n1−ε. The approximation
algorithm from Sect. 3 can be applied for this variation and achieves a matching
ratio of n.

The complementary problem Maximum Hidden Guard Set, where we
need to find a maximum number of hidden guards that cover a given polygon,
is equivalent to Maximum Hidden Set. Therefore, it cannot be approximated
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with an approximation ratio of nε for some ε > 0 for input polygons with holes
and it is APX-hard for input polygons without holes [7]. The corresponding
vertex-restricted variation cannot be approximated, as it is – again – NP -hard
to even find a feasible solution.

We have presented a number of inapproximability and approximability re-
sults for Minimum Hidden Guard Set in several variations. Most results are
tight upto low-order terms. However, there still exists a large gap regarding
the inapproximability of the problem Maximum Hidden Guard Set on in-
put polygons without holes, where only APX-hardness is known and the best
approximation algorithms achieve approximation ratios of Θ(n).
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